Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 920: 170708, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38336079

ABSTRACT

Outdoor defecation by people experiencing homelessness is frequently perceived as a potentially large source of human fecal pollution and a significant source of health risk in urban waterbodies with recreational contact. The goal of this study was to count the number of people experiencing homelessness and quantifies their sanitation habits in an urban river corridor setting, then use this information for estimating human fecal pollutant loading on a watershed scale. Two types of census counts were conducted including periodic point-in-time counts over six years and weekly counts of encampments. While the population census varied from count-to-count, the range of population estimates in the river corridor varied from 109 to 349 individuals during the six-year span, which mirrored the weekly counts of encampments. A face-to-face survey of people experiencing homelessness assessed the sanitation habits of the unsheltered population (N = 63), including outdoor defecation frequency and containment practices. Overall, 95 % of survey respondents reported defecating outdoors; 36 % practiced outdoor defecation between 4 and 7 days/week and 27 % practiced outdoor defecation <1 day/week. Of those that did practice outdoor defecation, 75 % contained their feces in a bucket or bag, thereby limiting fecal material contributions to the river; 6.7 % reported defecating on low ground near the river that could wash off when flood waters rise during a storm event. Only a single survey respondent reported defecating directly into the river. Based on literature values for average HF183 output for an adult human, and the average rainfall in the urban watershed, the total watershed contribution of HF183 averaged 1.2 × 1010 gene copies per storm event (95 % CI: 0.9 × 1010-1.6 × 1010) along the 41 km stretch of river in this study. This human fecal loading estimate is at least two orders of magnitude less than cumulative HF183 loading from all human sources measured at the bottom of the watershed.


Subject(s)
Defecation , Water Quality , Humans , Environmental Monitoring , Water Microbiology , Feces , Water Pollution
SELECTION OF CITATIONS
SEARCH DETAIL
...